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Integrated X-ray  Intensity Measurements  from a Solid Solution of Copper-Gold 
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In a solid solution random displacements of the solute and solvent ions from the mean crystal 
lattice are produced by the elastic strkins associated with their different sizes. 

A prediction of the effects on the X-ray spectrum is based on a model which treats the solute 
ions as centres of dilation in a finite isotropic elastic continuum. The resultant theory shows that 
the addition of solute atoms produces a mean lattice parameter change upon which are super- 
imposed random displacements of the ions. These displacements result in a decrease in the integrated 
X-ray intensities of the high-order diffraction lines of the form associated with thermal vibrations. 
The effect is particularly marked in the copper-gold solid solution and comparison of the measured 
X-ray intensities from copper and a 15 atomic % solution of gold in copper enable one to deduce 
a value for the root mean square displacement ~/(~) due to distortion, when that due to thermal 
vibration has been allowed for. 

Measurements of the X-ray spectra were made using a Geiger-counter spectrometer from which 
it is deduced that ~/(~2) = 0.11 ~. This value compares favourably with the value predicted from 
the elasticity theory, namely V(~ ~) = 0.13 A. 

1. I n t r o d u c t i o n  

The X-ray diffraction spectrum from a crystal con- 
raining two kinds of atoms depends on the respective 
scattering factors and the degree of order. Recent 
work, for example by  Cowley (1950) and Flinn, Aver- 
bach & Cohen (1953), has demonstrated convincingly 
the power of the low-angle-scattering technique in 
discovering the local atomic arrangements in metallic 
solid solutions. Information of a more restricted, 
though similar, nature can also be obtained from a 
measurement of the integrated intensities of high- 
order diffraction lines. 

A theoretical discussion of the problem of elastic 
distortion in a solid solution has been given by Huang 
(1947) and he predicts a diminution of the integrated 
intensities analogous to that  produced by temperature 
vibrations. This is contrary to the treatment given by 
Warren, Averbach & Roberts (1951), which predicts 
no such diminution. The discrepancy lies in the respec- 
tive assumptions made concerning the atomic dis- 
placements from the lattice sites. In  the former 
theory the displacements from any one solute atom 
are assumed to be spherically symmetric;  whereas in 
the latter they are related to the degree of order and 
hence depend anisotropically on the identi ty of the 
atoms displaced.. Detailed analysis shows that  the 
first non-zero components of the intensity modification 
formulae calculated from these ideas represent, respec- 
tively, d iminished integrated intensities and diffuse 
scattering. However, if in the theory of Warren et al. 
(1951) second-order terms are considered then the 
integrated intensities are diminished; though in this 
case their detailed computation is rendered prohibi- 
t ively difficult by the random anisotropy involved in 
the elastic problem. On the other hand the simpler 

assumptions of Huang, though physically less realistic, 
do lead to a tractable elastic problem which might be 
expected to be a useful guide in estimating the effec- 
tive atomic sizes in a random solid solution. With  these 
restrictions in mind, a slightly modified and con- 
siderably abbreviated version of Huang's  theory is 
given below. 

In this elastic sphere model of a dilute solid solution 
each solute atom is considered to be a centre of dis- 
tortion in a continuum formed of all the other atoms. 
As a first approximation the mutual  influence of these 
centres can be considered zero, so that  the distortion 
of the continuum can be described by a simple super- 
position of them. Thus if u(r) represents the elastic 
displacement at a point r under the influence of a 
single distortion centre at the origin, then the dis- 
placement of an atom at a lattice site an due to the 
elastic fields of all the solute atoms is given by 

un = ~ u ( an -a i )  , 
i 

where ai represents a lattice site occupied by a solute 
atom. The assumption of elastic isotropy leads to a 
unique choice of u(r), for the only suitable spherically 
symmetrical  solution of the elasticity equations is 

u(r) = cr/Ir[ a, 

c being a constant. This expression strictly applies to 
an infinite body, and leads to a non-zero stress at the 
surface of a finite one. The additional ' image dis- 
placement '  necessary to ensure that  this stress vanishes 
is considered to be negligible in Huang's  paper; but, 
as Eshelby (1954) has pointed out, its effect is in many  
problems appreciable and, for example, accounts for 
about 40% of the volume change in a solid solution. 
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In  the formulae deduced for the lattice parameter  and 
integrated X-ray  intensities the effect is embodied in 
the insertion of a factor ~, where 

~, = I + ~ G K ,  

G being the modulus of rigidity and K the com- 
pressibility. 

If now extinction is ignored the intensity of X-rays 
scattered by  the solid solution crystal is proportional 
to the mean value of 

~:  Z exp ( 2 g i b ( a , - a m + u ~ - u m ) }  
n m 

summed over all pairs of lattice sites am and am, 
where b is the reciprocal-lattice vector of the X-ray  
reflexion considered. This summation is averaged for 
all possible distributions of the atoms and is then 
suitably weighted with respect to the scattering-factor 
products. Inserting the appropriate formulae for u ,  
and um and performing the necessary summations, 
Huang shows tha t  the intensity formula exhibits three 
separate phenomena: diffuse scattering, a change in 
lattice parameter  and a diminution of integrated 
intensity. The first of these is not of immediate 
interest in this paper and will not be considered fur- 
ther. The second expresses the solid-solution para- 
meter as a function of the solute concentration P,  i.e. 

d-d______~o _ Ad  16~cP~, (1) 
do do 3d 3 ' 

where d o and d are respectively the parameters of the 
solvent and the solution. Finally, the third takes the 
form of an exponential diminution of the integrated 
intensities as the diffraction angle increases, so that ,  
apar t  from experimental numerical factors, they  are 
represented by  

. ( 2 )  

Here f~(A) and fT(B) are the scattering factors of 
atoms of types A and B corrected for dispersion and 
the thermal vibrations. ~2 is the mean square displace- 
ment  of the atoms from the lattice sites of the solid 
solution and is related to the elastic coefficient c, the 
concentration P and the solution parameter d by the 
formula 

42 = 101-___11 p ( l _ p ) c ~ 7 ~  " (3) 
d 4 

the numerical factor arising in the various lattice 
series appearing in the intensity formula. Thus by 
eliminating c between (1) and (3) a value for ~9 can 
be computed from the solution lattice parameter  and 
concentration which, by comparison with the measured 
value obtained from equation (2), is a measure of the 
validity of the theory. This value, 

1 - P  (dAd) 9 
49 = 0"360 p (do) 2 , (4) 

is seen to be dependent on the value of A d  for a given 
concentration; so tha t  to measure the effect with any 
precision it is necessary to choose an alloy with a large 
value of (Ad/P),  and for this reason a solid solution 
of gold in copper was used. To measure 42 with any 
degree of accuracy requires a number of high-order 
diffraction lines, so tha t  molybdenum radiation was 
used. This has the further advantages of producing 
comparatively small dispersion and extinction effects. 

2. Experimental details 
(i) Apparatus  

The integrated intensity measurements in connec- 
tion with this solid-solution problem were made on the 
Geiger-counter spectrometer described by  Coyle, Hale 
& Wainwright (1953). Schematic representations of 
the optical and electronic arrangements are shown in 
Figs. 1 and 2. 
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Fig. 1. Layout of spectrometer components. 
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Fig. 2. Schematic diagram of electrical circuits. 
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Referring to Fig. 1; a diverging beam of X-rays, 
defined by the 'side on' focus X of a sealed-off tube 
and the slit S1, is reflected from a curved quartz 
crystal C. The subsequent converging beam then 
passes successively through a slit $2, placed to reduce 
extraneous scatter, an aluminium foil F,  set to deflect 
a small proportion of the main beam into the monitor 
Geiger counter G1, and a Soller slit system A 1 designed 
to reduce the vertical divergence of the X-ray beam. 
An adjustable slit S 3 is placed at the position where 
the beam has minimum width; this, apart  from reduc- 
ing the extraneous scatter still further, has also, in 
special circumstances, been used to eliminate either 
one of the components of the s-doublet.  Thus Sa is 
the virtual source of a monochromatic beam of 2-3 ° 
horizontal aperture falling on the powder block P,  
which is rotated continually in its own plane. The 
rotation of the specimen about the spectrometer axis 
is coupled to tha t  of the Geiger counter G9 through a 
half-speed drive, which, after initial setting, enables 
the geometrical conditions of the Brentano (1937) 
focusing technique to be satisfied. After diffraction by 
the powder block, the X-ray beam converges through 
a second set of Soller slits A 2 on to the slit S 4. A re- 
duction by a factor of about 70:1 in the ratio of 
fluorescent to diffracted radiation from the powder 
block is obtained by inserting an aluminium foil K 
in front of the slit S 4. 

The counting circuits (Fig. 2) consist of standard 
A.E.R.E. units. By this arrangement, when the 
monitor counter receives a predetermined number of 
pulses, up to 250,000, both scaling units are switched 
off and the diffraction count and time are recorded. 
Thus fluctuations in the X-ray source are compensated 
and the probe paralysis time corrections can be com- 
puted. 

(ii) Preparation of specimens 
The present work was done with two materials 

supplied by Johnson and Matthey;  one a copper-gold 
solid solution containing 15.58% of 99-98% puri ty  
gold, and the other copper of 99.99 % purity. Specimens 
were made of filed particles, about 30 microns in size, 
pressed into flat discs 1-4 cm. in diameter and 0.15 cm. 
thick. The pressure used, 13 kg.mm. -~, was chosen 
after measuring the effects of preferred orientation in 
a number of specimens subject to pressures in the 
range 5-20 kg.mm. -~. For this pressure the specimens 
cohered well and the X-ray intensity deviations were 
less than  the estimated experimental scatter. The 
specimens were annealed for about 5 hr. at 500 ° C., 
sufficient to give sharp spots on back-reflexion Debye 
rings. Par t  of each specimen was used to make a 
measurement of the crystal cell parameter using a 
calibrated 9 cm. powder camera. The values obtained 
were: 

Cu: a (20 ° C.) -- 3.6152+0.0001 /~ 
Cu-Au: a (20 ° C.) = 3.7070±0.0001 /~ 

(ifi) Counting technique 
The measurement of the integrated intensities was 

made easier and more accurate than  numerical inte- 
gration of a measured diffraction line profile by use 
of non-overlapping counting sequences with a wide 
Geiger-counter slit in 6 or 7 positions. With a slit width 
of 38' the main effective intensity of the line is 
measured at  one position of the slit, and any overlap 
errors are at  a minimum since the slit edges are at  
points of low intensity. Furthermore, since the back- 
ground count, now much greater than cosmic, is in- 
creased, the statistical accuracy of the measured inte- 
grated intensity is greatly improved. All the counts 
were corrected for paralysis time according to the 
formula 

N = No/(1-NoKT ) (Arndt, 1949), 

where N is the corrected counting rate, N o is the 
recorded counting rate, T is the paralysis time, and 
K is the mean square intensity of source/(mean 
intensity of source) 2. For Mo K s  radiation generated 
at 50 kV., full-wave rectified, and 20 mA., the ap- 
propriate value of K, obtained by numerical integra- 
tion, is 2-30. 

The integrated intensity of any one line is then 
computed from the difference between the count 
registered with the slit straddling the line and the 
background count, as estimated from the arithmetic 
mean of the other slit positions in the sequence. 
Thus if the counts at the positions 1, 2, . . . ,  2 n + l  are 
N1, N2,..., N2n+a, Nn+l being the line count, the 
integrated intensity is estimated as 

1 / M \  2n+1 

\.~,.L / i 4 n + l  

where M and M' are the respective monitor counts of 
the line position and the background positions. The 
accuracy of the measurement is then proportional to 
the square root of the sum of the variances of the terms 
in the above formula, which is given by 

a~(I) "~ N,~+I(1 + Nn+I/M) 

+N~(I+NjM');  

whence the percentage probable error is given by 

e ~ 67.5 (~(I)/I%. 

To make the best use of the method a chart record 
of the spectrum is made to give the positions and 
intensities of the lines, whence, using the formula for 
the error given above, the most economical count 
sequence can be estimated. 

In  using molybdenum radiation it  was not found 
possible, with the monochromator crystal available, 
to eliminate the a~ component. Thus at  high diffrac- 
tion angles the diffraction line pair will not lie within 
one slit width and counting times must necessarily be 
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increased to obtain comparable accuracy with tha t  
obtainable using fully monochromatised radiation. 

The nature of the problem requires tha t  only the 
relative integrated intensities of the lines need be 
measured. Thus to correct for any changes in ex- 
perimental conditions, constant reference counts on 
one diffraction line were made and all the other inte- 
grated intensities were normalized with respect to it. 

3. E x p e r i m e n t a l  r e s u l t s  

The experimental test  of the effects of distortion on the 
integrated X-ray intensities from the copper-gold solid 
solution is divided into two parts. In  view of the 
numerous other factors involved in the computation 
of intensities, a detailed comparison of the experimen- 
tal ly determined and theoretically computed inten- 
sities for copper was first carried out. This was done 
primarily to check the experimental procedure, but  it  
also served to check the assumptions made in con- 
nection with the atomic scattering factors. 

If i t  is assumed tha t  there is no extinction, the inte- 
grated intensi ty of a diffraction line with indices (hkl) 
from a thick powder slab irradiated by an incident 
intensity I 0 is given by 

I(hkl) = IoqlF(hkl)lzG(O, a)A , 

where q is the multiplicity of the crystal planes con- 
tributing to the diffraction ring and F(hkl) is the 
scattering factor of a lattice cell. G(O, a) is defined by 

1 + cos  ~ 20  cos ~ 2c~ 
G(O, o¢) =- sin~ " 0 cos 0 ( l+cos  9" 2c~) ' 

where 0 and oc are the Bragg angles for diffraction 
from the monochromator;  the function expresses the 
effects of polarization and the spectrometer geometry. 
The factor A is defined by 

A-- 1 N~2~( C~" 

where 1 is the length of the receiving slit of the Geiger 
counter G~. (Fig. 1), r is the radius of the 'Brentano'  
focusing circle,/V is the number of crystal lattice ceils 
in unit  volume, ). is the wavelength of the incident 
X-radiation, /~ is the effective linear absorption co- 
efficient of the specimen and e, m and c are respec- 
t ively the charge of an electron, the mass of an electron 
and the velocity of hght. Now, since only the relative 
intensities of the lines from any one specimen are 
required, agreement between theory and experiment 
can be tested in terms of the ratio of the measured and 
computed intensities; thus the factor A need not be 
computed and the essential information is contained 
in the function K(hkl) defined by the relation: 

K(hkl) = E(hkl)/C(hkl), 

where E(hkl) is the normalized intensity count, and 

C(hkl) = qlF(hkl)]2G(O, ~x) . 

The polarization factor G(O, o~) is readily computed; 
as also is the multiplicity q if. there is no preferred 
orientation in the specimen. In  the specimens used 
any variations in q due to this la t ter  cause appear to 
be of the same order of magnitude as the estimated 
probable errors in the values of E(hkl), so tha t  values 
of q appropriate to a randomly orientated powder can 
be assumed in all the subsequent computations. The 
calculation of the scattering factors for the copper and 
copper-gold specimens, however, requires different and 
more detailed consideration. 

Copper scattering factors 
In  copper the scattering factors used were those 

corresponding to scattering by  s tat ionary atoms of 
X-rays of a wavelength short in comparison with the 
copper absorption-edge wavelength, as computed from 
the Hartree distribution of a singly ionized copper 
atom by James & Brindley (1931). These values must  
be corrected to take into account the proximity of the 
X-ray wavelength to the absorption edge of the 
specimen and its mechanical vibrat ion spectrum. 

The dispersion correction is small with molybdenum 
radiation and can be computed with sufficient ac- 
curacy from HSnl's theory (James, 1948). If fo is the 
uncorrected scattering factor, t ha t  corrected for dis- 
persion by the K electrons is given by 

Ill ~ fo+Af~.+½(Afi,')2/(fo+Af~). 

Values of f~ and f~' corresponding to different scat- 
tering atoms and incident wavelengths are tabulated 
in James's  book and the appropriate corrections for 
copper and gold atoms scattering molybdenum radia- 
tion are: 

Cu: Ill ~f0+0"26+0"58/( f0+0"26) ,  
Au: Ifl ~ f 0 - 1 " 0 6 .  

That  the form of this correction is substantially correct 
has been verified experimentally by Brindley (1936), 
who, in the same paper, substantiates the James & 
Brindley (1931) computations. 

The temperature correction to the copper scattering 
factors is based on the Debye--Waller theory of lattice 
vibrations. On this basis the appropriate value for the 
scattering factor for a monatomic cubic crystal is given 
by 

8 f r  = ]fl e x p { - - ~ 2 ~  (~-~)2}  , 

where ~29 is the mean square displacement of an atom 
from its average position in the crystal. The value 
of ~2 z can be expressed as a function of a slightly 
modified Debye characteristic temperature  as derived 
from specific heat measurements:  

4-364 × 10-XaT 
~ = ( ~ ( x ) + ¼ x )  (5) A02 

where A is the atomic weight, 0 the Debye tem- 
perature, T the absolute temperature  of the specimen, 
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Table  1 
Cu 

^ 

K(hkl) K(hkl)" 
hkl f~ C(hkl) E(hkl) ~ Cu+ Cu 

111 447 2.32 × 105 1.81 × 105 0.2 0.780 0.900 
200 384 1-11 × 105 1.03 ;< 105 0.3 0.928 1.081 
220 229 6.25 ;< 104 5.82 ;< 104 0-3 0.931 1.018 
311 169 6.46;< 104 6.09× 104 0.3 0.943 0.958 
222 152 1.75 × 104 1.62 x 104 0.7 0.926 0.914 
400 110 6.80× 103 6.29;< 103 1.5 0.93 0.86 
331 90.5 1.82 x 104 1.68 × 104 1.5 0.92 0.85 
420 84.1 1.59 × 104 1.45 × 104 2 0.91 0.83 
422 65.7 9.94 × 103 8.93 × 103 2 0.90 0.82 
333~ 511] 56.0 9.79× 103 8.96× 103 2 0.92 0.83 

531 35.9 6.92 × 103 6.21 x 103 3 0.90 0.77 

442] 34.4 4-02 X 103 3.84 ;< 103 4 0.96 0.82 
600/ 
620 28-8 2.41 × 103 2-34 × 103 7 0.97 0.82 

553] 14.7 2.88× 103 2.75× lO 3 6 0.95 0.87 731/" 

Cu+ 15 % Au 
t 

• f~T C(hlcl) E(hkl) ~ K(hkl) 
757 4.15;< 105 1.58× 105 0.3 0.381 
660 2.01 ;< 105 8.26 ;< 104 0.3 0.411 
419 1-21 × 105 5-73 ;< 104 0.3 0.474 
323 1.31 × 105 5.96 × 104 0"3 0-455 
296 3-61 ;< 104 1.63 × 104 0-7 0-452 
223 1.46× 104 6"00× 10 a 1-5 0-411 
184 3.93 × 104 1.59 × 104 1.5 0.404 
175 3.51 ×.104 1.43 ;< 104 1.5 0.407 
140 2.25 × 104 8.83 ;< 10 a 2 0.392 

119 2.21 × 104 8.33 × 103 2 0.377 

79.5 1.62 ;< 104 5.58 × 10 z 3 0-344 

76-2 9.41 ;< 10 a 3.03 x 10 z 6 0-32 

64.4 5.67 ;< 10 a 1.81 × 103 12 0.32 

31:5 6.23 × l03 1.80 × 103 12 0.29 

x is O/(T) a n d  ~(x) is t he  t a b u l a t e d  D e b y e  func t ion .  
I t  is o f ten  a s s u m e d  t h a t  t he  app rop r i a t e  va lue  of the  
D e b y e  t e m p e r a t u r e  to  inse r t  in  t he  above  fo rmula  
shou ld  be iden t i ca l  w i t h  t he  specific hea t  va lue  (Owen 
& Wi l l i ams ,  1947). Such  a g r e e m e n t  is ne i t he r ' j u s t i f i ed  
theore t i ca l ly ,  nor  f rom t h e  m e a s u r e d  va lues  of K(hkl) 
for copper  would  i t  seem to  be jus t i f i ed  expe r imen ta l ly .  
For ,  as Zener  & B i l j i n s k y  (1936) h a v e  po in t ed  out ,  
t he  m e a n - v a l u e  def in i t ions  of the  D e b y e  t e m p e r a t u r e s  
in  t he  speci f ic-heat  a n d  l a t t i c e -v ib ra t i on  theor ies  are 
d i f ferent .  I f  OD a n d  OM are r e spec t ive ly  these  values,  
t h e n  t h e y  are  r e l a t e d  b y  a func t ion  of t he  Poisson 
ra t io  a :  

O~ =f(a)OD. 

F o r  copper  t h e  c o m p u t e d  va lue  for f (a)  is 1.029, so 
t h a t ,  us ing  the  r o o m - t e m p e r a t u r e  va lue  of 315 ° K.  
for OD (Seitz, 1940), t h e  va lue  of OM to  be used 
in  t he  express ion  for  ~9. is 324 ° K. ,  whence  the  var ia-  
t i on  of t he  copper  s c a t t e r i n g  fac tors  wi th  Bragg  angle  
is g iven  b y  

fT = I f l  exp  { - 0 . 5 2 2  sin e 0/29}. 

Values  of q, G(0, ~) , f~ ,  a n d  C(hkl) are shown  in  
Tab le  1, t o g e t h e r  w i t h  t h e  no rma l i zed  m e a s u r e d  in- 
t ens i t i es  E(hkl) of t h e  cor respond ing  lines. The  va lue  
of K(hkl) for t he  f i r s t  l ine is small ,  owing to  ex t inc t ion ,  
b u t  t he r ea f t e r  t he  va lues  are c o n s t a n t  w i th in  s t a t i s t i ca l  
error.  T h u s  t h e  e x p e r i m e n t a l  a n d  theore t ica l  proce- 
dures  appea r  ju s t i f i ed  a n d  can be e x t e n d e d  wi th  
conf idence to  t he  a n a l y s i s  of t he  powder  d i f f rac t ion  
p a t t e r n  of a c o p p e r - g o l d  solid solut ion.  I n  t he  las t  
co lumn  of t he  t ab l e  t h e  va lues  of K(hkl), as c o m p u t e d  
us ing s ca t t e r i ng  fac to r s  for t he  un ionized  copper a t o m  
are  seen n o t  to  be cons t an t .  

Copper-gold scattering factors 
As shown  in  § 1, t h e  s ca t t e r ing  fac tor  of t he  com- 

pos i te  c rys t a l  can  be w r i t t e n  as the  p roduc t  of two 

factors ,  one be ing  the  s ca t t e r ing  fac to r  of an  un-  
d i s to r t ed  r a n d o m  solid so lu t ion  a n d  the  o the r  repre-  
sen t ing  the  effect  of in te r ion ic  forces on the  pos i t ions  
of t he  sca t t e r ing  uni ts .  The  m a g n i t u d e  of t he  l a t t e r  
f ac to r  is t he  sub jec t  of th i s  i nves t i ga t i on  so t h a t  i t  is 
necessa ry  t h a t  t he  fo rmer  should  be i n d e p e n d e n t l y  
es t ima ted .  

The  m a i n  d i f f icu l ty  in  m a k i n g  th i s  c o m p u t a t i o n  is 
t he  e s t i m a t i o n  of t he  l a t t i c e -v ib ra t i on  correct ion.  Th is  
c anno t  s t r i c t l y  be done b y  m u l t i p l y i n g  the  zero- 
t e m p e r a t u r e  composi te  s ca t t e r ing  fac tor  b y  an  ex- 
p o n e n t i a l  func t ion  of t he  fo rm used in  copper,  since 
th i s  would  i m p l y  t h a t  al l  t he  a toms  v i b r a t e d  wi th  t he  
same ampl i tude .  I n  genera l  th i s  is no t  so, for the  
t h e r m a l  v ib ra t i ons  depend  on the  e n v i r o n m e n t  a n d  
ine r t i a  of each a tom.  F o r m a l l y  in  an  ordered  s t r u c t u r e  
the  m e a n  square  v i b r a t i o n  of each k ind  of a t o m  in t h e  
un i t  cell shou ld  be considered separa te ly ,  so t h a t  t he  
s t ruc tu re  fac to r  can  be w r i t t e n  as 

8~2 -9. sing' 0~ 
F ( b )  = , ~ : f ( x j )  exp 2 ~ i b x j  ~---uj 29 . j 

s u m m e d  over  t h e  a t o m  sites in  a u n i t  cell. I n  th i s  
-2 is the  m e a n  square  d i sp l acemen t  of a toms  fo rmula  uj 

w i th  a tomic  co-ord ina t ions  x j ;  a n d  b is t he  reciprocM- 
la t t i ce  vec tor  of t he  spec t rum.  E v e n  in  th i s  case t he  

-9. is d i f f icul t  and,  as c o m p u t a t i o n  of t he  va lues  of uj 
a compar i son  of t he  t heo re t i c a l  a n d  e x p e r i m e n t a l  
e s t ima tes  of t he i r  m a g n i t u d e s  in a n u m b e r  of alkal i-  
ha l ides  shows (Lonsdale ,  1948), is inaccura te .  I n  a 
d isordered  s t ruc tu re  a de ta i l ed  c o m p u t a t i o n  would  be 
even  more  diff icult ,  so t h a t  i t  is necessa ry  to  resor t  to  
some su i t ab le  ave rage  for t he  v i b r a t i o n  ampl i tudes .  
The  D e b y e  t e m p e r a t u r e  can  be c o m p u t e d  f rom the  
elast ic  cons t an t s  ( James ,  1948) and  the  va lues  are in  
qui te  good a g r e e m e n t  w i th  t he  modi f ied  speci f ic-heat  
va lues :  for example ,  t he  va lues  for copper  a n d  gold 
are r e spec t ive ly  339 ° K.  a n d  177 ° K. ,  c o m p a r e d  w i t h  
the  cor responding  modif ied  specif ic-heat  va lues  of 
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324 ° K. and 177 ° K. Similarily, one can compute the 
appropriate Debye temperature from the elastic con- 
stants of the copper-gold solid solution. Experimental  
values of these constants were not known, but  from an 
elastic theory of solid solutions (Pines, 1940) they  can 
be computed with sufficient accuracy. The Debye 
temperature was deduced to be 283 ° K., from which 
a va lue  of the root-mean-square displacement can be 
calculated from formula (5), using the mean atomic 
weight given by  

M(Cu Au) = . P M ( A u ) + ( 1 - P ) M ( C u ) .  

The resultant value, 1/(~2 ~) = 0.139 A, is given ap- 
proximately by  the formula 

~ ( C u  Au) = ( 1 - P ) ~ ( C u ) + P ~ ( A u ) ,  

where V(~2)(Cu)= 0.136 A and [ / (~ ) (Au)=  0.145 A 
have been computed from the elastic constants of 
copper and gold. Thus on this basis it  is considered 
reasonable to use the value V(~ 9) = 0-142 A obtained 
when those for copper and gold, as evaluated from 
the more reliable specific-heat data  (i.e. ~/(~9)(Cu) = 
0.141 A and V(~9)(Au)= 0.145) are inserted in the 
above  formula. The variation of the copper-gold 
scattering factors with Bragg angle are thence given by  

f~,= {(1-P)]f(Cu)[ +Plf(Au)l}  exp {-0.531 (sin0/2)~}. 

The values of f ~ ,  C(hkl) etc. are tabulated, as for 
copper, in Table 1. 

For the copper scattering factors the values in the 
previous section were used; for the gold the values 
computed by  Henry (1953), for scattering of short 
wavelengths from the Hartree distribution of .~ singly 
ionized atom, were used. 

In  this case the values of K(hkl) are not constant, 
but  show a monotonic decline as sin 0/~ increases. 
The intensity measurements for the high-order re- 
flexions are not sufficiently accurate to discriminate 
in favour of any particular functional relationship 

between K(hkl) and sin 0/~t. Instead, assuming tha t  
the predicted exponential form of the elastic distortion 
intensity term is correct, it is then possible to deduce 
a value for the corresponding root-mean-square dis- 
placement of the atoms from their lattice sites. From 
the theory outlined in § 1 the computed intensi ty 
C'(hkl) is given by 

f 16~ ~ sin ~0~ 
C'(hkl) = C(hkl) e x p { - - - x - ~  ~ , 

J ( ,.~ 
whence 

1 6 ~  9 (sin 0) ~ 
In [K(hkl)] = const. ~-- 4 22 . 

The value for ~/(~2) can then be determined from the 
slope of the straight line, which, from the method of 
least squares, is calculated to fit the points with co- 
ordinates (sin 0/~t) ~ and K(hkl). The scatter of these 
points is shown in Fig. 3 and the probable value for 
the line slope is calculated from the least-squares 
method. Thus the root-mean-square displacement due 
to the elastic distortion is measured to be 

l/(~ ~) = 0.112±0.001 A .  

These limits of error express only the scatter in the 
experimental results and do not include any measure 
of the uncertainty in the theoretical scattering factors 
or in the computed thermal vibrations. The agreement 
between the measured and computed intensities for the 
copper specimen is good to within 1%, so tha t  con- 
fidence can be placed in both the experimental tech- 
nique and the temperature-corrected ionized copper 
scattering factors. Further,  taking Henry 's  estimation 
of the computational errors in the ionized gold scatter- 
ing factors into account, their contribution to the 
coppper-gold integrated intensities should make the 
overall inaccuracy due to scattering factors of the order 
of 2%. Thus the major inaccuracy is in the thermal 
vibration corrections of the composite lattice, for these 
may  well be as much as 10%. 

o 

F2 

o-2 o-s o .  ~s  ~ ,  o-~ o . ,  ~ ,  ,.o ,., 

(sin O/A) 2 

Fig. 3. Graph showing the  ratio of the  measured  in tegra ted  intensities and  those compu ted  wi thou t  any  
assumed latt ice dis tor t ion as a funct ion  of sin 0]/t for a 15 % solut ion of gold in copper. 
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4. D i s c u s s i o n  

A value for the root-mean-square displacement of the 
atoms in the solid solution due to elastic distortion can 
also be computed from (4); using the measured values 
of the concentration and lattice parameter it is 
V(~ 9) = 0.132 h.  

In view of the possible sources of error mentioned 
previously, this value is in good agreement with the 
experimental value. However, it does not necessarily 
follow that  the elasticity theory is fully established, 
for, as was pointed out in the first section, it is based 
on certain unrealistic assumptions. The assumption of 
spherically symmetrical elastic displacements is not 
consistent with the markedly anisotropic elastic con- 
stants of both copper and gold. The assumption that  
the atoms are randomly distributed is not supported by 
diffuse-scattering measurements made on a 23 % alloy 
(Sutcliffe & Jaumot, 1953), though it does not appear 
to be far wrong. Furthermore, there is some evidence 
from parameter measurements, not only in the Cu-Au 
system (van Arkel & Basart, 1928) but also in the 
systems Cu-Zn, Cu-Ga, Cu-Ge and Cu-As (Hume- 
Rothery, Lewin & Reynolds, 1936), that  the values of 
c so calculated decrease with the solute concentration. 
Such an effect would be directly associated with an 
interaction between the solute-atom distortion centres, 
which in the theory is assumed to be negligible. The 
magnitude of the effects of all these assumptions on the 
magnitude and meaning of c is difficult to estimate. 
If, however, on the basis of the agreement between 
the two values for ~/(4~), it is assumed that  they affect 
the value of c by only 10% then its value is c = 
0"33±0"3. 

In the elasticity theory the strain field about the 
solute atom is identical with that  round a spherical 
inclusion, initially of radius rB, set into a spherical 
cavity of radius r~. However, two extremum values of 
c can be obtained, depending on whether one assumes 
the solute inclusion to have a zero compressibility or 
tha t  of the parent lattice: 

(i) Incompressible solute sphere: 

c = r~(rB-r~) = 0.27 

on inserting values of r~ and r B equal to half the 
distance of nearest approach in the parent lattices. 

(ii) Compressible solute sphere (Pines, 1940): 

c = r~(rB--rA) ---- 0"20. 
1 +~G(A)K(B) 

Thus it would appear that  the gold solute atoms 
behave approximately as incompressible spheres. 
However, it must be borne in mind that  the associated 
value of c is slightly exaggerated, for the solute atom 
is effectively constrained and cannot take advantage 

of the larger cavity radius in directions other than 
nearest-neighbour vectors. 

I t  is interesting to consider also a solid solution of 
aluminium in copper. The work described above 
indicates that  one can derive a value for c solely from 
parameter measurements. For a 15 atomic% solution 
the value is computed to be c = 0.16. Again using the 
two elastic models as above, the appropriate values of 
c are 

(i) c = 0 . 2 5 ,  (ii) c = 0 . 1 4 .  

Thus in this case the aluminium solute atoms behave 
more nearly as compressible spheres. I t  is therefore 
evident that  the local 'elastic' distortion associated 
with any solute atom is not solely given by the dif- 
ference in 'size' of the solute and solvent atoms but 
also depends on the relative deformabilities, which are 
not directly related to the bulk elastic constants. 

The authors desire to thank Dr N. P. Allen for sug- 
gesting this problem and Messrs R. F. Braybrook and 
K. F. Hale for the assistance rendered in the ex- 
perimental work. The work described above has been 
carried out as part of the Research Programme of the 
National Physical Laboratory, and this paper is pub- 
fished by permission of the Director of the Laboratory. 

References  

ARKEL, E. VAN & BASART, J. C. M. (1928). Z. Kristallogr. 
68, 475. 

ARNDT, U. W. (1949). J. Sci. Instrum. 26, 45. 
BRENTA_~O, J. M. C. (1937). Proc. Phys. Soc. 49, 61. 
BRINDLEY, G. W. (1936). Phil. Mag. (7), 21, 778. 
COWLEY, J. M. (1950). J. Appl. Phys. 21, 24. 
COYLE, R. A., HALE, H. F. & W~NW~mHT, C. (1953). 

J. Soi. Instrum. 30, 151. 
ESEELBY, J. D. (1954). J. Appl. Phys. 25, 255. 
FLX~, P. A., AVERBAC~, B. L. & COHEN, M. (1953). 

Acta MetaUurg. 1, 664. 
HENRY, W. G. (1953). Private communication. 
HUANO, K. (1947). Proc. Roy. Soc. A, 190, 102. 
HUME-ROTHERY, W., LEWIN, G. F. & REYNOLDS, P. W. 

(1936). Proc. Roy. Soc. A, 157, 167. 
JAMES, R. W. (1948). The Optical Principles of the Dif- 

fraction of X-rays. London: Bell. 
JAMES, R. W. & BRINDLEY, G. W. (1931). Phil. Mag. 

(7), 12, 81. 
LONSD~E, K. (1948). Acta Cryst. 1, 142. 
OWEN, E. A. & W ~ L ~ S ,  R. W. (1947). Proc. Roy. Soc. 

A, 188, 509. 
PINES, B. J. (1940). J. Phys. U.S.S.R. 3, 309. 
SEITZ, F. (1940). Modern Theory of Solids. :New York; 

London: McGraw-Hill. 
SUTCLIFFE, C. H. & JAUMOT, F. E. (1953). Acta MetaUurg. 

1, 725. 
WARREN, B. E., AVERBACH, B. L. & ROBERTS, B. W. 

(1951). J. Appl. Phys. 22, 1493. 
ZENER, C. ~5 BILJII~SKY, S. (1936). Phys. Rev. 50, 107. 


